[Overview][Constants][Types][Classes][Procedures and functions][Index] Reference for unit 'Types' (#rtl)

TRect

Rectangle in a plane

Declaration

Source position: typshrdh.inc line 101

type TRect = packed record

public

  constructor Create();

  constructor Create();

  constructor Create();

  constructor Create();

  constructor Create();

  class operator equal(TRect,TRect):Boolean();

  class operator notequal(TRect,TRect):Boolean();

  class operator add(TRect,TRect):TRect();

  class operator multiply(TRect,TRect):TRect();

  class function Empty;

  procedure NormalizeRect;

  function IsEmpty;

  function Contains();

  function Contains();

  function IntersectsWith();

  class function Intersect();

  procedure Intersect();

  class function Union();

  procedure Union();

  class function Union();

  procedure Offset();

  procedure Offset();

  procedure SetLocation();

  procedure SetLocation();

  procedure Inflate();

  procedure Inflate();

  function CenterPoint;

  function SplitRect();

  function SplitRect();

  property Height: LongInt; [rw]

  property Width: LongInt; [rw]

  property Size: TSize; [rw]

  property Location: TPoint; [rw]

  case LongInt of

    0: (

        Left: LongInt;

  

Horizontal position of left edge

        Top: LongInt;

  

Vertical position of top edge

        Right: LongInt;

  

Horizontal position of right edge

        Bottom: LongInt;

  

Vertical position of bottom edge

      );

    1: (

        TopLeft: TPoint;

  

Position of top-left corner

        BottomRight: TPoint;

  

Position of bottom-right corner

      );

    2: (

        Vector: TArray4IntegerType;

      );

end;

Description

TRect defines a rectangle in a discrete plane. It is described by the horizontal (left, right) or vertical (top, Bottom) positions (in pixels) of the edges, or, alternatively, by the coordinates of the top left (TopLeft) and bottom right (BottomRight) corners.

See also

TPoint

  

Point in a plane

TSize

  

Area size


Documentation generated on: Mar 17 2017